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Structures which have the same squared transform but which are neither congruent nor enantio- 
morphic are defined as homometric structures. 

ttomometric structures can be expressed systematically by means of the convolution operation; 
their anaIysis starts out from the so-called Q-function. They may be conveniently classified as 
follows : 

I. Pseudohomometric structures.--(a) Homometrie structures which under suitable affine trans- 
formations degenerate to enantiomorphic or congruent structures. (b) Structures which are 
homometric only for infinitely large crystals. 
II. iomomorphs.--Homometric structures which remain homometric under any arbitrary 
affine transformation. 

A general expression of finite homometric structures which covers all the known examples is 
given by an integral equation of the folding type; its degenerate cases are discussed. 

I n t r o d u c t i o n  

From diffraction experiments only the intensity 
distribution is obtained directly. The scattered 
amplitude, R(b), is proportional to the Fourier trans- 
form of o(x), the density distribution of the scattering 
material which obviously is always finite in size. The 
scattered amplitude, R(b), is related to the so-called 
Q-function which is the 'convolution square' (symbol 
2 

~) of ~. Now this Q-function can be calculated from 
the experimentally obtained intensity data by inverse 
Fourier transformation (after correcting for polariza- 
tion, Thomson, Lorentz and other relevant factors). 
Thus 

I(b) = ~(Q(x )} ,  

R(b) = ~(Q(x)}, 

RR*(b) = I (b ) ,  
2 

Q(x) = Q =  Q(y)Q(y+x)dvy .  

(1) 

In the literature only the convolution product (symbol 

glge) of two functions gl and g2 is explicitly introduced 
a s  

gl g~ = g~ gl = gl(y)g. , (x-y)  dry.  (2) 

Denoting by ~-(x) a function which is symmetrical 
to the function ~(x) about the point x = 0, i.e. 

e-(x)  = e ( - x ) ,  

and substituting gl(x) by ~(x), g~(x) by ~-(x) (or vice 
versa) in (2), it is seen that  
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2 

Q = Q ~- = Q(y)Q(y-x)dvy .  (3) 

Substitution of y - x  by yJ shows immediately that  this 
integral is identical with that  of (1). Moreover, this 
proves that  the function Q(x) has always a centre of 
symmetry at x = 0 (cf. Friedel's rule), i.e. 

Q(x) = Q ( - x ) .  (4) 

Structures which have the same squared transform 
cannot be distinguished by X-ray investigations alone. 
Convolution operations offer an elegant representa- 
tion of such structures. They are related by 

2 2 2 

Q1 = Q~ = Q3 = . . . ,  (5)  

where Q1, Q~,--. denote the density distributions of 
the individual structures. 

Now it is convenient to distinguish between special 
cases of (5) .  

I. ~l(x) = ~(x): congruence (6) 

Ql(X) can differ from ~(x) by a translation or a 
rotation or a combination of both. 

II. ~l(x) = ~2(-x): enantiomorphy (7) 

From (1) it is immediately seen that  

2 2 

Q(x) = o.1 = Q2. 

Hence it is impossible to distinguish between o 1 and Q2 
from the knowledge of the Q-function, i.e. of the inten- 
sity alone. The effect of specific absorption edges 
which allows Friedel's law to be violated and thus 
helps to distinguish between these cases will not be 
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considered here. Such structures Qz and ~ are called 
enantiomorphs and strictly do not belong to the 
conventional concept of homometric structures, since 
enantiomorphic forms in three-dimensional space, 
though not congruent, can be brought into coincidence 
by the combined operation of rotation, translation 
and inversion. 

Patterson (1953) has pointed out a two-dimensional 
set consisting of six point atoms all having the same 
weight (see Fig. l(a), (bl). They are enantiomorphic to 
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Fig. 1. Example of two two-dimensional functions (a) and (b) 
and their convolution square (c) which shows two planes 
of symmetry, though the functions themselves possess no 
such symmetry (after Patterson, 1953). In three-dimensional 
space the structures (a) and (b) are congruent but in two- 
dimensional space enantiomorph. All the points in (a)-(c) 
have the same weight, namely 1. Only the centre (thickly 
marked) in (c) has weight 6. 

one another in two-dimensional space but congruent 
in three-dimensional space since one can be trans- 
formed into the other by a simple rotation and parallel 
displacement. They are, however, very interesting in 
view of the fact that  they give rise to homometric 
structures under suitable affine transformations (see 
Figs. 2 and 3). 

('a) (b) 

Fig. 2. The same structures as in Fig. 1 after affine trans- 
formation. Contrary to Fig. 1, they are now homometric 
and are classified as pseudohomometric (after Patterson, 
1953). 

Structures giving the same Q-function but still not 

belonging to I and II are defined as h0m0metric struc- 
tures. They can be broadly classified into pseudohomo- 

metric structures and real homometric structures or 
homomorphs, as Patterson calls them. Homomorphs 
are characterized by the fact that  they remain homo- 
morph under any affine transformation whatsoever in 
contradiction to some homometric structures which 
degenerate to enantiomorphic or congruent structures 
under suitable affine transformations. 

III. Pseudohomometry. 
(a ) Homometric structures which u~ler  a suitable affine 

transformation degenerate to enantiomorphic or con- 
gruent structurez.-----Figs. 2 and 3 obtained from Fig. 1 
illustrate the case. Patterson (1953) has shown that  
the structures of Figs. 2 and 3 are the only possible 
'six point pairs'. Other such homometric structures 
exist only for more than six equivalent point atoms. 
Structures containing fewer than six equivalent point 
atoms do not possess homometric mates. 

(b ) Structures which are homometric only when the sets 
are infinitely extended.--Let  ~o be the density distribu- 
tion of a lattice cell and Q0 its convolution square and 
let zl(x) be the lattice peak function• The convolution 
square of the infinitely large crystal is then propor- 
tional to its Patterson function Pa(x),  thus 

2 

Pa(x) = Qo zz, Qo - ~o . (8) 

Fig. 4(a)and (b) shows respectively lattice cells of two 
structures (after Hermann, 1953) which are homo. 
metric only when the crystals are L~finitely large. In 
the examples given here both of them are two-dimen- 
sional and each of them possesses a centre of symme- 
try. I t  is also interesting to note that  they are com- 
plementary to each other. Their Q0-functions (Fig. 4(c) 
and (d)) differ f rom each other but their Patterson 
functions are identical (Fig. 4(e)). Hosemann & Bagchi 
(1952, 1953a, b) have shown that  such structures of 
finite size can be uniquely analysed by taking into 
consideration, in addition to integral intensities, the 
displacements of the reflexion maxima from their ideal 
positions at the points of the ideal reciprocal lattice. 

The cyclotomic and other related structures (Patter- 
son, 1943) belong to this group, whether they possess 
a centre of symmetry or not. The authors have shown 
(Hosemann & Bagchi, 1953a, b) that  all such structures, 
if finite in size, have different Q-functions and that  

their Q0-functi0ns, which also ~fer from one another, 
can be separated. 
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Fig. 3. Another example of pseudohomometric structure obtained from Figs. 1 or 2 by a singular affine transformation 

(a z parallel to a2). It is the simplest possible example of one-dimensional homometric structures, in which all the points have 
the same weight (after Patterson, 1953). 
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Fig. 4. Examples  of two centrosyrmnetrical two-dimensional lattice cells of point  structures (a) and (b) (after Hermann,  1953~ 
and their convolution squares (c) and (d), which differ from one another.  (e) shows their identical Pat terson function. Broken 
lines indicate boundary  of la t t ice  cells. 

I n  this and in the following figures the number  represents 
weight 1. 

IV. Homomorphs 
Fig. 5(a) and (b) shows two such two-dimensional 

sets of point atoms whose convolution squares (Fig. 5(c)) 
are identical. Fig. 5(d) shows the ~r, Q~, Q7 functions 
(see below). Here an analytic expression will be given 
for such types of functions. 

Let Qr, Q~, ~t, .. .  be asymmetric distributions of 
mat ter  and Q~-,. Q~-, QF . . . .  be their centrosymmetrical 
functions. Thus 

Q;-(x) = Qr(-x), QT(x) = ~ ( - x ) .  (9) 

~oz = or g8 is homometric to 
(10) 

the weight of the point  atoms. Points wi thout  any number  have  

and Qr~s ~t, ~rQ[ Qt, Qr QTQ~- and Qr~s Q/- belong to the 
same homometric set. 

Moreover, Qr Q8 and Q~-Qs ~t are enantiomorphic 

to ~r~8 and ~r Q~ Qt respectively, and need not be 
discussed here. 

The proof of (10) (and also of (12)) follows directly 
from the commutative law of convolution operations. 
Thus 

2 2 

Q z = Q r ~ r  Q~ =~rQ~ ~r Q~ =Q2" (11) 

In  general 
e = e?  e~ . . . .  e ~ ,  (12) 

where 
~+ = ~k(x) and Q~- = Qk(--x), 

Then 
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Fig. 5. Two homometr ic  point  structures (homomorphs) wi thout  centres of symmet ry  (a) and (b) (after Patterson,  1953) and  
their convolution square (c), showing the special case of equation (10). (d) represents the elementary structures Qn. 
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Fig.  6. E x a m p l e  of h o m o m o r p h s  w i t h o u t  centres  of s y m m e t r y ,  i l lus t ra t ing  equa t ion  (10). 

is a function with 2 ~-1 homometric mates and 2 ~-1 
enantiomorphic forms when all the @k are asymmetric.* 

A simple two-dimensional example of point atoms 
is shown in Fig. 6. Here ~ consists of two point atoms 
with weights a and b at  distance u, and @s of two point 
atoms with weights c and d at  distance v. Fig. 6(d) 
shows the arbitrarily chosen values of the weights, 
namely a =  1, b = 2 ,  c =  1, d = 3 .  Fig. 6(c) shows 
their common convolution square. 

Fig. 7 shows a complicated example corresponding 
to (12) of two-dimensional homometric point struc- 
tures where all the three @k are without centres of 
symmetry.  
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Fig.  7. E x a m p l e  of h o m o m o r p h s  w i t h o u t  centres of s y m m e t r y ,  
i l lus t ra t ing  equa t ion  (12) (after Pa t t e r son ,  1953). The circles, 
crosses and  poin ts  denote  the  d i f ferent  weights  of the  
po in t  a toms.  

* P a t t e r s o n  (1953) h a d  c o m m u n i c a t e d  to us two theorems  
on homomet r i c  s t ruc tures  which are special degenera te  cases 
of the general formulation given by (lO) and (12). ratt, erson's 
theorems  are:  

Theorem A . - - T h e  set  a i+b  i has as homomet r i e  m a t e  the  
set  ai - -b  i provided  t h a t  ne i ther  the  set ai nor  the  set b i is 
cen t rosymmet r i c  and  provided  t h a t  a 0 = b 0 = 0 (0 < i < I ,  
O <  j <  J).  

Theorem B . - - A n y  two of the  sets ai4-bg+c k. . .  fo rm a pair 
p rovided  t h a t  (i) a t  least  one sign remains  unchanged  and  
a t  least  one sign is changed,  and  (ii) t h a t  the  set of vectors  
whose signs are no t  changed  and  the  set  of vectors  whose 
signs are changed  are bo th  acentric.  

I n  con t ra s t  to  (10) and  (12), here all the  par t ia l  s t ruc tures  
Or, @s, @t. • • consist  of po in t  a toms  all of which have  the  same 
weight .  ~rhe subs id iary  condi t ion a 0 = b 0 = 0 is no t  n e c e ~ a r y .  

Further,  examples given in Figs. 1-3 are interesting 
special cases of (10). Let 

I 

@~ = P ( O , 1 ) + P ( O , O ) + P ( 1 , O ) ,  

@r = P ( i , O ) + P ( O , T ) + P ( 1 , 1 ) - P ( O , O ) ,  

where P(Pl,  P,) denotes a point atom at  the coordinate 
point x = plal  +p~a~. a 1, a 2 are two arbitrari ly chosen 
vectors which in certain cases lead to enantiomorphic 
structures (cf. Fig. 1) and in the other cases to homo- 
metric pairs (cf. Figs. 2 and 3). 

Since P(a  1, a,) P(bl,  b,) = P(a l  +bl, az+bg) 

it follows tha t  

@r@s = P(1 -T )+P(TO)+P(O-2 )+P( l i )~ -P( l l )+P(21)  

and 

@r @-[ = P ( 2 0 ) + P ( l l ) + P ( l l ) + P ( O 1 ) + P ( l l ) + P ( 1 2 )  

correspond completely to the sets shown in Figs. 
1-3. In  contrast to the examples given in Figs. 5-7, 
it  is not at first sight evident here tha t  these structures 
also may  be constructed by convolution operations 
from more elementary functions 0r, @s . . . .  

Last ly we come to the case where at the most one and 
only one member of the homometric set is symmetric 
(or antisymmetric). 

Substituting @~ by @r in (10), we get 

2 

@1 = @r@~, @, = @~-@r = @r. ( 1 3 )  

Here also @1 is the homometrie mate  of @2, but  @9. 
evidently always possesses a centre of symmetry  which 
is lacking in @1 provided @r is asymmetric. In  the cases 
of @r possessing a centre of symmetry,  @1 becomes 
identical with @9. 

Fig. 8 shows a simple example where @r consists of 
two point atoms of weights a and b (e.g. a = 1, b = 2). 

If @r consists of three point atoms (of weight 1) not 
lying ,in a straight line, we get the homometric sets 
of Fig. 9(a), (b) and their common Qo-function (Fig. 
9(c)). If these three points lie on the same straight line 
without possessing a centre of symmetry  (see Fig. 
10(d)) then we get the structures of Fig. 10(a), (b) 
which have the common convolution square. In  the 
case of a centrosymmetric @r, all the homometric 
structures of Figs. 6-10 become identical. 
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Fig. 8. A simple example of homomorphs, one of which has a centre of symmetry, illustrating equation (13). 
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Fig. 9. Further example of homomorphs illustrating equation (13). (This figure was communicated 

to us independently by Hermann and Patterson.) 
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Fig. 10. Further example of homomorphs illustrating equation (13). 

The considerations put  forward above show clearly 
the task of an X-ray crystallographer confronting the 
problem of homometric structures. 

First, it is very important  to separate the Q0-func- 
tion from the Q-function obtained from intensity data. 
The structures which are homometric only for infinitely 
large crystals are clearly distinguished. 

Secondly, from the Q0-function it is possible to find 
the symmetrical  (or antisymmetricM) o function, if 
any such solution exists, by a recursion process. I t  
can then be definitely concluded tha t  this is the only 
member of the homometric set which possesses a centre 
of symmetry  (or antisymmetry).  

The expression (12), namely 

~0 ~---~)1 ~2 ~3 * ' "  ~ n ,  (12) 
shows clearly tha t  the problem of finding other 
members of the homometric set, all of which of neces- 
sity are asymmetric, depends on being able to resolve 
the obtained 0 into the elementary factors 0n, i.e. 
to solve the integral equation (12). I t  can be safely 

concluded tha t  in general there is an infinity of solu- 
tions. In  some cases, however, it may  be possible to 
resolve a previously determined e into its folding 
factors Qn; this would then directly give all the 
members of the homometric set. 

We would like here to express our thanks to Dr 
A. L. Pat terson for private communications drawing 
our at tention to many  interesting examples of homo- 
metric functions which led to the present formulation 
of homometric functions. 
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